
TRAC-M-TR-14-023
15 June 2014

Concentration of Risk Model
(CORM) Verification and

Analysis

TRADOC Analysis Center - Monterey
700 Dyer Road

Monterey, California 93943-0692

This study cost the
Department of Defense approximately

$40,000 expended by TRAC in
Fiscal Years 13-14.

Prepared on 20140711
TRAC Project Code # 060106.

DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited. This
determination was made on 15 June 2014.

TRAC-M-TR-14-023
15 June 2014

Concentration of Risk Model
(CORM) Verification and

Analysis

Edward M. Masotti
Sam Buttrey

TRADOC Analysis Center - Monterey
700 Dyer Road

Monterey, California 93943-0692

PREPARED BY: APPROVED BY:

EDWARD M. MASOTTI Christopher M. Smith
MAJ, IN LTC, FA

TRAC-MTRY Director, TRAC-MTRY

DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited. This
determination was made on 15 June 2014.

This page intentionally left blank.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

Standard Form 298 (Re . 8-98)v
Prescribed by ANSI Std. Z39.18

15-06-2014 Technical Report October 2013 - January 2014

Concentration of Risk Model (CORM) Verification and Analysis

Edward M. Masotti,Sam Buttrey TRAC Project Code 060106

TRADOC Research Analysis Center, Monterey, CA
700 Dyer Rd,
Monterey, CA 93943

TRAC-M-TR-14-023

Army Analytics Group

Approved for public release; distribution is unlimited. This determination was made on 15 June 2014.

The goal of this project was to reproduce an analysis that had been done in the Department of Health Care Policy, Harvard
Medical School. This project represented one of the first efforts to exercise all the capabilities of the PDE. After receiving and
reproducing scripts, we were able to reproduce datasets that were very similar but were unable to verify Harvard's results. This
effort identified significant issues with the development process including system system and connectivity related issues and
design choices in the code. We recommend that PDE administrators consider the increasing processing power and that project
managers consider improvement of the quality assurance and quality control of project deliverables.

Risk, Concentration of Risk Management (CORM), Person-Event Data Environment (PDE)

Unclassified Unclassified Unclassified
Unclassified 32

MAJ Edward Masotti

(831) 656-6271

This page intentionally left blank.

iv

TABLE OF CONTENTS

REPORT DOCUMENTATION iii

LIST OF FIGURES vii

1. INTRODUCTION 1
1.1. Background . 1

1.1.1. Person-Event Data Environment (PDE) 1
1.2. Key Terminology . 1

1.2.1. Raw Data . 2
1.2.2. Cleaned Data . 2
1.2.3. Code . 2
1.2.4. Model . 2

1.3. Problem Statement . 2
1.3.1. Issues for Analysis . 2

1.4. Constraints limitations, and Assumptions 3
1.5. Project Team . 3
1.6. Project Methodology . 3
1.7. Project Timeline . 4
1.8. Report Organization . 5

2. METHODOLOGY 6
2.1. Receipt of Source Code . 6
2.2. Code Modification . 7
2.3. Code Compilation . 7
2.4. Code Correction . 7
2.5. Code Comparison . 7
2.6. Database Maintenance . 7

3. RESULTS 9
3.1. Results . 9

3.1.1. PDE Improvements . 9

4. DISCUSSION 10
4.1. System Issues . 10

4.1.1. Connectivity issues . 10
4.1.2. Memory and processing bottlenecks 12
4.1.3. SAS Work and What Happens on Termination 12
4.1.4. Our strategy for recovering from a failure 12

4.2. Code Issues . 13
4.2.1. Mismatched file and library names 13
4.2.2. Changing the ID name . 13
4.2.3. Code That Did Not Work . 14

v

4.2.4. Breaking Scripts into Pieces 15

5. RECOMMENDATIONS 17
5.1. Recommendations . 17

APPENDICES

A. THE ROUNDS OF CODE A-1
A.1. Round 1 . A-1
A.2. Round 2 . A-1
A.3. Round 3 . A-1
A.4. Round 4 . A-1
A.5. Round 5 . A-2

GLOSSARY GL-1

REFERENCES REF-1

vi

LIST OF FIGURES

Figure 1–1. CORM methodology. 4

Figure 2–1. Database development methodology. 6

Figure 4–1. Mental Model of PDE . 11

vii

This page intentionally left blank.

viii

1. INTRODUCTION

The Concentration of Risk Model Verification and Analysis project is a continuation of the
work conducted in 2013 which described progress and setbacks in the Study to Assess Risk
and Resiliency in Soldiers (STARRS) Validation.[1] This document describes work performed
in both FY 2013 and 2014.

1.1. Background

The goal of this project was to reproduce an analysis that had been done in the Department
of Health Care Policy, Harvard Medical School. That analysis, done in concert with the
National Institutes of Mental Health and using data from a repository at the University
of Michigan, had attempted to identify soldiers at higher-than-average risk of suicide. We
will use “Harvard” to mean “the set of analysts at Harvard.” Harvard’s work had consisted
of building the data set and then producing and running a model on that data. Our task
was to construct the very same data ourselves using Harvard’s SAS code but using the data
supplied in the Person-Data Environment(PDE).

1.1.1. Person-Event Data Environment (PDE)

This project represented one of the first effort to exercise all the capabilities of the PDE. As
a result, a number of the insights we provide speak more to the usefulness and growth in
capability of the PDE than to the analysis of the project itself. In this section we recap the
project and describe where it finished. In Chapter 4 we list some of the obstacles that made
this project less successful than it might have been. It is our hope that future analysts will
benefit from being aware of some of the issues early on.

The PDE is a virtual computer environment set up in association between the Defense Man-
power Data Center and the Army Analytic Group. Users connect remotely to a server inside
the PDE and, once there, can access data and analysis tools that are otherwise insulated
from outside. In this way the security of personally identifiable information is preserved, and
Institutional Review Boards satisfied. The PDE includes an Oracle database from which our
data was drawn and the SAS Enterprise Guide into which Harvard’s code was imported.

1.2. Key Terminology

For the purposes of this project it is important to understand some key terms which are
described below.

1

1.2.1. Raw Data

Raw data is defined as the manpower data as delivered by the Army through the PDE and
stored in Oracle tables within the PDE.

1.2.2. Cleaned Data

Cleaned Data is defined as the output from the“data cleaning process. This is the process
that ensures that all the data have plausible values, so that nobody has two different fatal
incidents, that everybody is either male or female, that nobody who has earned a college
degree later loses it, and so on.

1.2.3. Code

Code is defined as the SAS and R commands used to turn raw data into cleaned data and
produce models.

1.2.4. Model

Model is defined as a prediction rule, expressed in SAS or R, that allows the user to predict
the probability of suicide for any soldier. The model will be produced using, as input,
predictors (the set of factors that held to be associated with suicide) and the response (an
indicator of whether a suicide in fact occurred).

1.3. Problem Statement

The focus of this research was to verify the statistical analysis and results from the original
research team’s Concentration of Risk Model (CORM) using the 2004-2008 cohort data set
as well as a sample from the 2010-2012 cohort. This work sought to verify the results of
CORM, test the model with the most recent datasets, and make recommendations on the
implementation of the model.

1.3.1. Issues for Analysis

Issue 1: Can we verify CORM?

EEA 1.1: Can we replicate Harvard’s datasets?

EEA 1.2: Do we replicate Harvard’s model output?

Issue 2: Can we improve PDE performance?

EEA 2.1: Can we improve the methodology for building datasets?

2

EEA 2.2: Can we improve model performance?

1.4. Constraints limitations, and Assumptions

Constraints limit the study team’s options to conduct the study. Limitations are a study
team’s inabilities to investigate issues within the sponsor’s bounds. Assumptions are study-
specific statements that are taken as true in the absence of facts.

• Constraints

– Complete by 30 September 2014.

– Analysis and data manipulation will be conducted in the Person-Event Data-
Environment (PDE).

• Limitations

– We will obtain an IRB determination.

• Assumptions

– We will be able to accurately reproduce the study team’s work without complete
documentation.

– We will be able to build a cohort 2010-2012 test data set within the PDE.

– We will receive and maintain access to the PDE.

– We will receive the Harvard model in a timely manner.

1.5. Project Team

• Sponsor: TRAC-MTRY

• Project Lead: MAJ Edward Masotti (TRAC-MTRY)

• NPS Faculty:

– Dr. Sam Buttrey

1.6. Project Methodology

The project began with four main phases. Midway through the project execution, the spon-
sor, Army Analytics Group (AAG), asked us to cease work and to provide documentation
of the progress achieved. Below describes the original methodology as well as what we did
accomplish with each phase. The first phase was focused on the verification of CORM. We

3

were able to reproduce the majority of the datasets that Harvard produced but did not
receive an actual model. Thus, we did not achieve verification of the model. The second
phase was to be focused on data development. We wanted to build a new dataset using the
2010-2012 cohort and identify performance issues with this dataset and model. This phase
was not achieved. The third phase was to focus on analysis and improvement. We wanted
to apply the model to the 2010-2012 dataset as well as identify performance improvements
in the PDE and SAS code. This phase was partially realized as we were able to identify
potential performance improvements in both the PDE and SAS code. Finally, we provided
documentation of all methodologies and analyses to the sponsor in the form of this technical
report. This methodology is shown in figure 1–1.

Figure 1–1: CORM methodology.

1.7. Project Timeline

We executed this project according to the following timeline.

30 OCT 13 Initial IPR.
15 NOV 13 IRB determination.
30 NOV 13 Receive Model.
15 JAN 14 IPR #2.
22 JAN 14 CORM verification complete.
31 MAR 14 Documentation complete.

4

1.8. Report Organization

Chapter 1 of this technical report gives the background information, the problem definition,
and overview of the research methodology. Chapter 2 provides a deeper description of the
methodology. Chapter 3 provides the results. Chapter 4 provides discussion of the challenges
encountered in the conduct of the project. Chapter 5 provides our recommendations.

5

2. METHODOLOGY

This project focused on verification the Harvard model. The methodology consisted of six
key components and applies equally to the source code required to build the datasets as
well as the model itself. These components include receipt of the code, modification of the
code to enable operation with the PDE environment, running the code in SAS within the
PDE, identifying and correcting errors received, looping through running the code until no
errors occur, comparing the output to the Harvard team’s output, and maintenance of the
of the PDE file base to ensure sufficient disk space remains to continue production of the
next “round” of code. This is shown in figure 2–1.

Figure 2–1: Database development methodology.

2.1. Receipt of Source Code

The Harvard team developed the CORM model in segments using SAS on the Harvard
database and then delivered these segments as they were completed. The code was delivered
in four pieces (“rounds”) in October of 2012 and then an updated set was delivered in April
2013. That updated set was further augmented in May 2013. The code also included some
limited documentation, log files (showing what happened when Harvard ran the code at their
facility) and some datasets (with, for example, ICD9 codes). A fifth round was delivered in
July 2013.

6

2.2. Code Modification

The code received cold not be immediately run within the PDE due to a number of challenges.
First, Harvard’s used a Linux based system to develop the code. The PDE is in the windows
environment. As such, file path convention for the two systems is different. Therefore any
time a file path was used in the code, modifications were required to enable operations in
the windows environment. Secondly, the naming convention of variables was not consistent
between Harvard’s database and the database within the PDE. These challenges are further
described files within the in Chapter 4.

2.3. Code Compilation

After code modification and with the realization of the file path and naming convention
challenges, we attempted to break the scripts into pieces. This also led to difficulties such
as issues with global variables, macros, and deletion of intermediate products. In the end,
it became necessary to reproduce our own scripts to build the datasets. Using Harvard’s
code and databases as a baseline, we developed scripts using SAS in the PDE environment
to reproduce the Harvard’s output.

2.4. Code Correction

The code compilation was an iterative process in which we compiled each script one at a time
until we received errors. We then corrected errors and ran the script again. We continue
this process for each script until no errors occurred. When a script was complete we moved
on to the next script until all scripts were complete.

2.5. Code Comparison

During the code compilation and code correction process, we compared our output to Har-
vard’s. Often times, even when the scripts complied without errors, the output was not
similar and we would again iterate through the process until the outputs were analogous.
The final output of a complete round was a database that would be used as input for the
next round or within the final model.

2.6. Database Maintenance

After a round was complete, it was critical to conduct maintenance within the PDE. Although
improvements have been made in disk space and processor speed, at the time, disk capacity
would often be approached. It was necessary to delete intermediate files that were necessary
in the production of the output but were not going to be used in subsequent steps. This

7

produced its own set of challenges as files be deleted accidental or either by human error or
without the realization that they would be used in a subsequent step (this occurred most
often when it was necessary to run in another round).

8

3. RESULTS

3.1. Results

We completed running the original four rounds of code in October, 2013. The running of the
fifth round was not completed. We are not certain how our results compare to Harvards. We
expect some differences, because, realistically, we do not expect our starting data to have
exactly matched theirs. Nor can we do the same specific operations on individual soldiers
records that Harvard did, since the naming convention in Harvard’s database and the PDE
database are different. However, work in comparing log files suggests that in fact the two
resulting data sets are quite similar.

As discussed earlier, we did not receive a model. Harvard did produce “source code” that
they described as a model. It fell short of a model in that it was not predictive. One of the
variables was the year which meant that the code could only be applied to the current dataset
and could not predict future risk. It also came with comments embedded in the source code
which stated they were still working on the final model. Through the completion of this
project, no additional code was provided.

3.1.1. PDE Improvements

We consider this project as part of the PDE’s startup cost. Had the PDE been configured
at the beginning of the project as it is now, we expect that this project could have been
completed in a few months. The primary improvements to the PDE during the life of the
project were these.

• Sufficient disk space: The initial configuration of the SAS server was insufficient for
the project. The current setup, at about 2TB on the main disk, is just barely adequate.
Given that disk space is comparatively cheap, we urge administrators to obtain and
make available as much disk space as possible.

• Permission control: When PDE technical staff was able to arrange for SAS Desktop
sessions to continue after a disconnection, progress was hugely improved. It is impor-
tant to note that the settings for the SAS Server are distinct. We thank the technical
staff for their flexibility and recommend that these settings be maintained the way
they are now.

9

4. DISCUSSION

In this section we lay out the obstacles that impeded progress on this work. The intent here
is to record our experiences as an aid towards future developers in future projects. We are
not intending to cast blame on collaborators, nor to exonerate ourselves for portions of the
project that took unexpectedly long to perform.

We have divided obstacles into two types, although in fact these overlap. The first set
of obstacles includes a number that have now been remedied; again, we record these for
the benefit of future developers in other environments. These are system- and connectivity-
related issues and refer mostly to the inadequacies and vicissitudes of hardware and networks.
The second set of obstacles concerns certain design choices in the code. We believe that this
code was developed in a piecemeal manner in order for its users to answer a particular
question one time. It was not the result of a rigorous software development effort designed
to produce a re-usable product, and we recognize that. Nonetheless some of these design
choices made it difficult for us to work on the code and the data, and so we detail those
issues in that section.

4.1. System Issues

In this section we detail the system-related obstacles that future researchers should be aware
of. These can be roughly broken into categories representing connectivity issues, on the one
hand, and disk space and other system resources, on the other. Of particular import is the
behavior of SAS on abnormal termination, so we discuss that briefly as well.

4.1.1. Connectivity issues

The nature of the PDE is such that a lot of computers need to be in communication with
one another more or less continuously during processing. These computers include:

• The clients computer (at which the analyst sits physically);

• The SAS Desktop (which serves as the virtual home for the analyst in the PDE, and
from which the analyst can run the SAS Enterprise Guide);

• The SAS Server (on which SAS itself actually runs);

• The Oracle Server (where the Oracle database is maintained and served).

10

While we do not have much information about the internal construction of the PDE, it
certainly makes sense to maintain a mental model that looks like figure 4–1:

Figure 4–1: Mental Model of PDE

When our work on the project began, a failure of any component (either a computer or a link)
was, we believe, enough to cause the SAS system to stop working. The connection between
the client machine and the SAS Desktop was particularly troublesome. That connection,
made via Citrix software, was very fragile, and, again, at the beginning of the project, any
disconnection caused SAS to terminate abnormally. (See “SAS WORK and What Happens
On Termination,” below.) A restart of the client computer, as another example, would
terminate the entire job, and these restarts were distressingly frequent as a result of, for
example, software updates at the administrative level.

After some investigation, PDE technical staff were able to find and alter certain timeout
settings in such a way as to keep SAS Desktop sessions open for some length of time even
when the client connection was temporarily lost. This was one of two main changes that
made it possible for this work ever to be done. (The second was the addition of a large
amount of disk space; see “Memory and Processing bottlenecks” below.)

Of course, each of the computers and connections in our mental picture is subject to planned
events like shutdowns for maintenance and unplanned events like system crashes. Even if the
frequency of any one event is low, the chances of even one interruption during a three-day job
is not always insignificant. We developed a number of strategies to protect against the delays
caused by interruption, although in retrospect none of them was particularly successful. We
note that the connection from the client to the SAS desktop was very much the weakest link
in this chain. We did observe failures of all sorts, but, as we said in the previous paragraph,
real progress was very difficult until PDE staff was able to alter timeout settings so that SAS
Desktop sessions could remain working even when clients disconnected.

Without our having spent much time on quantifying this, our intuition is that, before these
timeout settings were altered, about 80% of stoppages were the result of the client discon-
necting from the SAS Desktop; perhaps another 10% were the result of the client machine
crashing; and most of the rest appeared to be associated with issues on the SAS Desktop
itself. We did, however, see occasional evidence of the SAS Server crashing (or at least dis-
connecting from the SAS desktop) and of the Oracle server crashing or being inaccessible.
Again, because of the large number of complex entities and connections, a certain crash rate
is to be expected; the issue was, for us, the general inability to recover.

It is worth noting that there is a set of timeout settings for access to the SAS Server itself that
appear to be separate from those for the SAS Desktop. One approach we used was to try to

11

run SAS jobs in “native” SAS directly on the SAS Server, rather than use Enterprise Guide
from the SAS Desktop. This approach required that the Desktop’s own security settings be
properly adjusted.

4.1.2. Memory and processing bottlenecks

A second set of issues arose when the resources of the PDE were inadequate to handle the
demands of the code. (In part this may have been due to inefficiencies in the code, but there
is no way to get around the fact that this is a large problem.) For months the available disk
space on the SAS Server was measured in the hundreds of GB, but we learned in August 2013
that Harvard’s server required 2 TB of data in order for their scripts to run. PDE technical
staff were able to secure and install the required disk space, but only, of course, after this
requirement was made known to them. Disk space tended to be used up by intermediate
products that were not removed because SAS terminated abnormally (see section B.1.c).
This created another burden on the PDE technical staff; that of policing the disk drive in
search of large files that could be safely removed. When the disk on the SAS Server filled,
SAS terminated abnormally.

In addition to the lack of disk space we suspect that the SAS Desktop’s stability could be
endangered by the presence of multiple users. At least, we observed a number of crashes
that did not appear to be attributable to other causes, or to bad luck. As the PDE grows
the number of machines dedicated to handling users should probably grow as well.

4.1.3. SAS Work and What Happens on Termination

Intermediate products computed by SAS are stored in a directory named WORK which
resides on the SAS Server. These products are regular disk files with extension sas7bdat and
they persist until either they are explicitly deleted inside the SAS code, or SAS terminates
normally. When SAS terminates, all the members of the WORK directory are deleted
from the disk. If SAS terminates abnormally, items in WORK that have been completed
will normally be complete and usable in a future session, although we were wary of using
SAS items recovered after a crash. (Certainly an item that is in use when SAS terminates
abnormally will be unusable, because it will be either corrupt or incomplete.) Conversely
if SAS terminates abnormally, items in WORK that are preserved in this way need to be
explicitly removed in order to free up their disk space.

4.1.4. Our strategy for recovering from a failure

Before it became clear that the PDE lacked sufficient disk space to run the Harvard code in
the form in which it was presented, we attempted to run code through a makeshift strategy
of breaking scripts into pieces and running them bit by bit. This approach turned out to
raise problems of its own; see section 4.2.4, Breaking Scripts into Pieces, and section 4.2.4,
“Removal of Intermediate Products.”

12

4.2. Code Issues

In this section we describe some of the issues that required attention or correction before
Harvard code could be used in the PDE.

It must be said that Harvard’s code was clearly not the product of a software development
process designed to produce streamlined, well-tested code. Instead it had the hallmarks of a
set of ad hoc programs put together in order to solve a particular problem one time. This is
understandable given the nature of the project, but it made the code’s re-use difficult. We
have all had the experience of having tested, verified code fail for reasons that are difficult
to detect; this is all the more common in someone else’s one-time code.

The code was only sporadically documented. (Documentation on the outside, describing the
flow from one program to the next, was somewhat better.) Certain coding standards that
we have come to expect (the use of meaningful variable names that are not re-used from
one task to a different one) were not always met. Again, we understand that code is often
developed under time pressure and the rewards for comprehensive documentation are small.
Nonetheless this is not the sort of code we would present to clients.

4.2.1. Mismatched file and library names

Tables in Harvard’s data center often had slightly different names than the corresponding
tables in our Oracle database. References to tables with different names had to be found and
changed. In principle this might have been done automatically after constructing a table
with one row per table and two columns giving the different names, but in practice we did
this by hand.

It is also the case that Harvard’s own internal table- and library-naming conventions were
inconsistent. For example the final script from round 1, script 2 is named final1 and stored
in a library named linuxdrv. In script 5 this is read in from a library named new1, and,
separately from new. We learned that these libraries were maintained by different analysts.
It might be worth noting that, also in round 1 script 5, another dataset named final1 is
created. This is not the same as the earlier dataset by that name.

4.2.2. Changing the ID name

The simplest change we have to make to the code was to convert all references to Harvard’s ID
(which they called PID CHPPM) to the ID in the PDE (called PID PDE). For most scripts,
a simple global change was all that was necessary. However, we did encounter several issues
with IDs. First, in a number of places the Harvard code specified particular IDs, presumably
to resolve issues with individual records. Because we lacked the ability to convert CHPPMs
to PIDs, we ignored all of these references.

Second, in a number of cases the code creates additional ID columns (in, for example,

13

dcips injury afmets death agregation). These new columns were given width 9 in Harvard’s
code, whereas we require that they have width 12. These references had to be found and
changed.

Third, in a few instances the SAS code would refer to the column names directly, which
caused problems with case-sensitivity. SAS variable names are not case-sensitive, so we got
into the habit of making a global, case-sensitive conversion of all instances of PID CHPPM
(or pid chppm, or whatever; we saw plenty of each) to pid pde in every script. But, for
example, on line 1798 of allsx cpt v7 linux 3 we see this macro code: %let var = %sys-
func(varname(&dsid, &i)); %if &var ne yearmonth & &var ne PID PDE &then Here the
value contained in var is being compared to the strings yearmonth and PID PDE. This com-
parison is a case-sensitive one, so if in this case an instance of PID CHPPM (upper-case)
was converted to pid pde (lower-case), this code will fail.

In short, even the act of converting one ID name to another could cause problems.

4.2.3. Code That Did Not Work

Direct Sorting of Oracle data

In some cases code that we were provided did not run in our environment. One type of
difference arose from the different ways that data was being accessed by the SAS engine
Harvard used an ODBC connection, while we used the SAS/ACCESS interface to Oracle.
If tmds were the name of an ODBC connection, then Harvard’s code would use that library
and execute a command like this (this example comes from make tmds constructs 1.sas):
Proc sort data=tmds.tmds pem inpt dt (other clauses here)

We presume that this call was successful for Harvard, but it does not appear to be valid in
the case where tmds is an Oracle connection. Instead, we needed to read the data into SAS
first, and sort in a separate step, like this: Data holder; set tmds.tmds pem inpt dt; run;
Proc sort data=holder (other clauses here)

Transposition without Prefix

In some cases (e.g. make tmds constructs 1.sas) the Harvard code used proc transpose to
transpose a matrix. The PREFIX= option specifies a prefix to be added to the front of
the names of the newly constructed columns. Without a prefix, SAS would, in some cases,
produce columns names that are invalid (because, for example, they start with a numeric
character. Therefore SASs default is to add an underscore as the prefix character. It was
discovered, with Harvard’s help, that SAS Enterprise Guide does not honor this default
(although the documentation seems to suggest that it is supposed to). So those transpose
commands that use var and group clauses on a numeric column, and do not specify an
explicit PREFIX, will fail under SAS Enterprise Guide.

14

This causes particular trouble in script 4 of round 2 (alldx merge master 4). We observed a
number of errors running this script. In an earlier document we attributed a those errors to
referring to diagnoses for which there were no soldiers recorded. It is now established that
these errors were a result of this bug in SAS Enterprise Guide.

4.2.4. Breaking Scripts into Pieces

During the time that we found ourselves unable to run jobs to their completion, because of
connection or resource issues, we tried to break the scripts into pieces and run the pieces
one at a time. This approach, too, ran into difficulties. These difficulties included the use
of global variables, macros, and deletion of intermediate products.

Global variables

Some scripts used global variables. These are variables that do not belong to a SAS data
set. They can be set or retrieved anywhere in the code. As an example of their use, imagine
trying to construct a dataset with one row for each individual and one column for each
separate diagnosis for that individual. It would be useful to know the maximum number of
diagnoses that any individual had, in order to dimension the resulting data set. So one way
to accomplish this would be to read all diagnoses, accumulating counts by ID, and saving
the maximum number of diagnoses to a global variable.

The issue is that when running code in pieces any global variable that will be needed in a
particular piece has to be identified and set before the piece can be started. A more general
solution might have been to write these variables to a small text file or SAS data set for
more permanent storage between runs.

Use of macros

A SAS macro is a sub-function that allows the re-use of code in different contexts. Macros
can be very useful and we will not argue for their elimination. However, SAS Macros are
written in a modified form of the language that makes reading and understanding macro
code difficult. We believe that long complicated macros deserve particularly strong docu-
mentation.

If a section of code needs to be run several times, a macro is a natural choice. However, it
is difficult to run only a piece of a macro, which is best seen as an indivisible unit. So a
script consisting of a macro definition followed by a single invocation confers no advantage
in efficiency over regular code and suffers from being very difficult to divide into pieces. We
encourage developers to avoid this.

As a particularly egregious example of macro misuse, consider the active duty macro in the
check trans v26 linux 2 script. This is defined twice, using different definitions. Therefore

15

when the reader encounters a call to a macro of that name he or she cannot uniquely
determine the contents of the macro being called; the macro being called depends on the
callers location in the program. This reduces readability enormously.

Removal of intermediate products

In a number of instances, the SAS code explicitly removes intermediate products. This is a
good practice when disk space is at a premium, but a bad one when crashes are common,
since if all intermediate products up through a particular point can be preserved, the program
can be re-started at that point with no loss. We do not fault Harvard for their choices in
this matter, but, seemingly inevitably, we found ourselves both running out of disk space
and being unable to restart at intermediate points.

Copying results across file systems

Because of insufficient disk space, we would often attempt to run a piece of the SAS code,
copy intermediate products over to another file system on the network, delete the product
from the SAS server, and then resume. While this makes sense in principle, it is painful
in execution. These disk copy operations often took several orders of magnitude longer
than would an equivalent copy within a file system and, as we have said, the danger of a
crash during any extended operation is non-zero. Still, when disk space was at a premium
something had to be done.

16

5. RECOMMENDATIONS

5.1. Recommendations

We recommend that PDE administrators consider the increasing processing power. We
suspect, but cannot prove, that some crashes were caused by contention among users for
resources, either those of SAS, or Oracle, or of the network. As the number of PDE users
grows, so too will this contention. We recommend that PDE administrators continue to
have the environment grow in terms of the processing resources available. Perhaps parallel
computing architectures can be brought to bear for the big jobs we expect to see in the
future.

We also recommend that project managers consider improvement of the quality assurance
and quality control of project deliverables. The code given to us by Harvard was inade-
quate for the task. We recommend that quality control be performed on the code and the
documentation as part of any contract. If code cannot run on our system because we use
SAS/ACCESS and Harvard uses ODBC, that is understandable. If code cannot be run
because Harvard’s own internal naming system is inconsistent, that is less so.

17

A. THE ROUNDS OF CODE

Harvard supplied five sets (“rounds”) of code. The documentation is not very forthcoming
on which round undertakes which task, but in this section we give our interpretation of what
the code is trying to accomplish. In most cases we rely on the comments in the code to
deduce the intent.

A.1. ROUND 1

This is the primary “data cleaning” module. The jobs in this round try to form a consistent
and complete data set. This takes two forms. First, many jobs apply corrections to the data
to try to ensure consistency. For example, the “Educ correct linux 3” script apparently tries
to correct records where a soldier’s education level is lower in a later month than in an earlier
one. Second, the scripts look to different sources to find the data in question. For example,
“Gender new 6” extracts the gender from each of 23 tables and uses whichever non-missing
value it finds.

Naming convention: Many of the scripts have dates in their name; we presume this is
intended for version control. A trailing number indicates the order in which the scripts are
to be run, so Age new101411 8 is run immediately after Race ethnicity11182011 7.

A.2. ROUND 2

Round 2 creates the data sets with inpatient and outpatient diagnoses from the TMDS data
base. This takes in the Harvard-supplied data set icd9 091112.csv, which gives ICD codes
and corresponding diagnoses.

A.3. ROUND 3

This round cleans MOSs and assigns to them “factors” associated with the ONET civilian job
classification system. (Presumably this is the scheme described at http://www.occupationalinfo.org/onet/.)
The mos readme 100912.docx and mos variables.docx files gives somewhat more information
than is often presented for other jobs.

A.4. ROUND 4

The fourth round of code is intended to add, to the overall manpower data set, medication
data.

A-1

A.5. ROUND 5

This round creates, and merges with the master file, data sets with suicide (and related)
events, in- and out-patient hospitalizations, and injuries.

A-2

GLOSSARY

AAG Army Analytics Group
Cleaned Data The output from the“data cleaning process.
Code SAS and R commands used to turn raw data into cleaned

data and produce models.
CORM Concentration of Risk Model
Model A prediction rule, expressed in SAS or R, that allows the

user to predict the probability of suicide for any soldier.
PDE Person-Event Data Environment
Raw Data The manpower data as delivered by the Army through

the PDE and stored in Oracle tables within the PDE.
STARRS Study to Assess Risk and Resiliency in Soldiers
TRAC Training and Doctrine Command Analysis Center

GL-1

This page intentionally left blank.

GL-2

REFERENCES

[1] Thomas M Deveans and Sam Buttrey. Study to Assess Risk and Resiliency in Soldiers
(STARRS) Validation. Technical report, 2013.

REF-1

	Report Documentation
	List of Figures
	Introduction
	Background
	Person-Event Data Environment (PDE)

	Key Terminology
	Raw Data
	Cleaned Data
	Code
	Model

	Problem Statement
	Issues for Analysis

	Constraints limitations, and Assumptions
	Project Team
	Project Methodology
	Project Timeline
	Report Organization

	Methodology
	Receipt of Source Code
	Code Modification
	Code Compilation
	Code Correction
	Code Comparison
	Database Maintenance

	Results
	Results
	PDE Improvements

	Discussion
	System Issues
	Connectivity issues
	Memory and processing bottlenecks
	SAS Work and What Happens on Termination
	Our strategy for recovering from a failure

	Code Issues
	Mismatched file and library names
	Changing the ID name
	Code That Did Not Work
	Breaking Scripts into Pieces

	Recommendations
	Recommendations

	The Rounds of Code
	Round 1
	Round 2
	Round 3
	Round 4
	Round 5

	Glossary
	References

